Liebert, et al. (2024). Automated Impact Echo Spectrum Anomaly Detection using U-Net Autoencoder. The 13th Conference on Prestigious Applications of Intelligent Systems Proceedings, 392, S. 4634 - 4641, DOI: 10.3233/FAIA241058.


Daneshian, B. et al. (2024). Influence of Binding Energies on Required Process Conditions in Aerosol Deposition. Journal of Thermal Spray Technology, 33, S. 2301-2322, DOI: 1007/s11666-024-01842-z.


Liebert, A. et al. (2024). CNN based Temperature Dynamics Approximation for Burning Rooms. IFAC-PapersOnLine, 58(4), S. 420-425, DOI: 1016/j.ifacol.2024.07.254.


Kandekar, et al. (2024). Mastering the complex time-scale interaction during Stress Corrosion Cracking phenomena through an advanced coupling scheme. Computer Methods in Applied Mechanics and Engineering, 428, S. 117101, DOI: 10.1016/j.cma.2024.117101.


Suchan, T. et al. (2024). Crack propagation in anisotropic brittle materials: From a phasefield model to a shape optimization approach. Engineering Fracture Mechanics, 303, S. 110065, DOI: 1016/j.engfracmech.2024.110065.


Palani, A. et al. (2023). Toward coupled fire-structure simulations for forecasting smoke leakage in case of concrete structures under Proceedings in Applied Mathematics and Mechanics, 23: e202300250, DOI: 10.1002/pamm.202300250.


Daneshian, et al. (2023). The impact of binding energies on the necessary conditions in aerosol deposition. Proceedings in Applied Mathematics and Mechanics, 23: e202300275, DOI: 10.1002/pamm.202300275.


Kandekar, C. et al. (2022). A partitioned computational framework for damage evolution in stress corrosion cracking utilizing phase-field. Proceedings in Applied Mathematics and Mechanics, 22: e202200211, DOI: 1002/pamm.202200211.


Weber, et al. (2022). Increasing the safety of rescue workers in fire events by merging fire simulations, structural models, and artificial intelligence. dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, S. 209-215, DOI: 10.24405/14553.


Liebert, A. et al. (2022). Anomaly Detection with Autoencoders as a Tool for Detecting Sensor Malfunctions. 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS), S. 01-08, DOI: 10.1109/ICPS51978.2022.9816908.